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Abstract—The paper considers the frictionless contact problem for an elastic layer which is resting on a
rigid horizontal foundation and is acted upon by an axisymmetric line load P, a uniform clamping pressure
po. and a vertical homogeneous body force pg, due to gravity, For varying values of the radius of the
loading ring and of the load ratio Pl(pgh + po)h, the critical value of the applied load initiating an interface
separation along the contact plane, the size of the separation area, and the distribution of the contact stress
are studied, and some numerical results are given,

1. INTRODUCTION

Prior to the publication of [1], in solving the problems involving elastic layers and foundations it
was generally assumed that the contact between the layer and the subspace is either one of
perfect adhesion or frictionless with the additional condition that across the interface the
normal component of the displacement vectors is continuous, i.e. on the interface no separation
is allowed (see for example[2] for some typical results and references). However, in {1] it was
pointed out that if the layer is loaded by local compressive forces, due to the “bending” effects
the contact area would decrease, and the size of the resulting contact area would be in-
dependent of the magnitude of the load and would depend on its relative distribution only. This
peculiar property of the so-called receding contact problem holds also for loading through a
flat-ended rigid stamp with sharp edges[3, 4]. For other stamp profiles the size of the contact
area becomes a function of the resultant compressive force[3, 4]. Clearly, for a locally loaded
frictionless infinite layer or plate, formation of a finite contact area is possible only if one
neglects the effect of gravity (see for example[5-9]). Some plane contact problems for a
frictionless layer or a beam resting on a horizontal rigid foundation were considered in [10-12]
where the effect of gravity (and a possible uniform clamping pressure) was taken into account.
In such problems as long as the external load is applied locally, the contact area would always
be infinite, and when the magnitude of the external load exceeds a certain critical value a
separation would take place between the layer and the foundation.

The purpose of this paper is to study this separation process for an infinite elastic layer
under axisymmetric loading. Specifically, the contact pressure, the critical load initiating
separation, and the size of the separation area will be investigated and determined as a function
of some dimensionless load and geometrical variables.

2. FORMULATION
The axisymmetric elasticity problem is described in Fig. 1. If the magnitude of the load P is
less than a critical value P.,, there is no separation along the interface and the problem can be
solved as an ordinary boundary value problem (Fig. 1a). However, for P > P,, the separation
occurs, and depending on r,/h one would have the mixed boundary value problem shown in

either Fig. 1(b) or Fig. 1(c). In either case the following equations must be solved under certain
boundary conditions:
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Fig. 1. Geometry of the frictionless contact problem with and without interface separation.

where u and w are the r and z-components of the displacement and pg is the body force due to
gravity. The stress components are given by

u U, aw
T =(A +2u)-5‘;+/\(7+3;),

ous s (42),

O =(/\+2p)%g~+A(3—:+£)

r Y

u  ow
O =u (-5';4"-5;-) Q2a-d)

Writing the solution of (1) as

u(r, z) = u,(ry+ un(r, 2)

wi(r, 2} = w, (2)+ wi (1, 2), (3a,b)

the particular solution corresponding to the nonhomgeneous term pg in (1) and satisfying

w0 =0, oL(n0==ps 0o%(rh)=-po,

A
fo ab(r,z)dz =0, (P = po+ pgh), (4a~d)
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may be obtained as follows:

13-«
Uy (r) = 2 7= (”“*z"g")"

_ 2pez g_g_z_[x-l _ Zh]
w,,(z)—”l('(__,’)+2‘u K+l(z h)+—x__7, (5a,b)

where p, is the uniform clamping pressure applied to the layer at z=h and x =3—-4y. The
homogeneous solution of (1) satisfying the regularity condition at r = « may be expressed as [4]

upr, z) = J; ) [(A+ A2y e™ + (A3 + A2) e 1) (ar)a da,

w(r, 2) = J; ) {[A, + (§+ z)Az} e 4 [- A+ (;'L- z)/h] e"}]o(ar)a da,

0<z<h, Osr<wm, (6a,b)

Substituting (3), (5) and (6) into (2), the stress components of interest are found to be:

1)

ﬁc,,(r, z)=f{~ [«(A,+A,z)+52-ﬁAz] e+ ["‘(As
x Jo(ar)a da +§1; [pg(z = h) = po),

5% on(r2) = fo {- [a(A, + Azz)—l—;—5 A,] e 4 [a(A,+ A4z)+1—;-5 A.] e"}
x Ji(ar)a da. (7a,b)

The unknown functions A;(a)....Asa) are determined from the boundary conditions at z =0
and z=h.

3. CONTINUOUS CONTACT (0<P<P,) ;
Referring to Fig. 1a let P be the magnitude of the tensile line load (per unit length) acting
along the circle r=r,, z = h. If P is sufficiently small so that no separation takes place on the
interface z =0 (i.e. for P < P.,), the solution of the problem as given by (3), (5) and (6) may be
completed by using eqns (7) and determing A, .., A( from the following boundary conditions:
0.(r,0)=0, w(r,0)=0,

on(r,h)=0, on(rLh)=P8(r-rg)=~py, 0sSr<w, (8a-d)
After determining A,, the contact stress is found to be

“(ah+1)e™ +(ah —1)e™*
1+4ah e *® — g™

on(r,0)= Do pgh + ZPFQ Jolary)Jolar Ya da. (9)

Defining now the following quantities

w=ah, oz(rn0)=p(r), pot+pgh=p, (10)

"

eqn (9) may be written as

p(r) _
D, 1+2 1+4we™ —c™™

.(w+1)e"+(m—l)¢-3~1(M%)Jo(mi)mdw’ 0sr<w, (11)
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From (11)it is seen that for y =0, p(r) = — p, and up to a certain value of v, p(r) would remain
to be negative, that is, the continuous contact on z =0 plane would be maintained. Also note
that this critical value y., = P../p.h, at which the separation on z = 0 starts is a function of ry/h.
Clearly, for small values of r,/h the separation starts at r =0 and y., may be obtained from

1 _ nf"@+he“+@-1e™ o o )
=] et Jo(wh)wdw. (Osh<0.62. (12)

The calculated results show that (12) would give vy, if 0 < ro/h <0.62. For values of ro/h greater
than 0.62 the equation obtained from (11) by writing p(r) = 0 has two unknowns, y., and rh.
For some selected values of ry/h Fig. 2 shows the pressure distribution, the value of y,, and the
corresponding A at which p(r) =0. The calculated values of y. are shown in Fig. 3 as a
function of 7o/h. Since the critical value of the resultant force P = 2#r,P,, would remain finite
as ry—>0, for ro =0 P,, as well as y., would become unbounded. Therefore, for small values of
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Fig. 2. Contact stress distribution in the absence of interface separation.
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Fig. 3. Critical load initiating interface separation. y,, = P./hipgh + po), P* = 2er P I hipgh + po).

ro/h a more appropriate dimensionless quantity which should be evaluated would be

* _ PR =2‘lrfo =_2__1LI_'9

Figure 3 also shows P, as a function of 7o/h. Note that for a concentrated lifting load (i.e. for
ro = 0) the (total) force initiating an interface separation is given by '

Pr = 1.214 (po+ pgh)h?. (14)

4. SEPARATION (P> P,)

For a given value of ry/h if P> P, there will be separation on the z =0 plane, generally
along a ring-shaped region a < r < b (Fig. 1c). For this problem eqns (3), (5}~(7) are still valid.
However, in this case, the functions A,,... A, must be determined from the following mixed
boundary conditions.

o (r, h)=P8(r—ro)—po.  on(rh)=0, 0sr<w, (15a,b)
o-(r0=0, O0sr<e, (15¢)
o,(r.0)=0, a<r<b, (15d)

w(r.0)=0, 0sr<a. b<r<wm, (15¢)

Three of the four unknowns A; may be eliminated by substituting from (7) into (15a~c) and the
mixed conditions (15d) and (15¢) would give a pair of dual integral equations for the remaining
unknown function. One may also reduce the problem to a singular integral equation by defining
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the following function
a
s;w(r,0)=f(r), 0sr<m, (16)

Replacing now the conditions (15d) and (15¢) by (16), A,, .. A, may be determined in terms of
f(r), and (15d) would then give an integral equation to determine f(r). Note that (15e) is
equivalent to

]
f(n=0, 0sr<ag, b<r<m, jfmarao. (17a.b)

After somewhat lengthy but straightforward manipulations we obtain (see for example Ref. [4]
for the general procedure and for the derivation of singular kernel)

a(r, 0)m {l TRURS) o gt f * fo)ds J; " Ey(@)uar) (as)a da}

l+xlm), s~r1

+Pry L ExaVolar)diara da~p, =0, a<r<b, (i8)

where
2_

;‘gf';f [Lp!-z K(sin+ E(slr)], s<r,

hy(r,s)=

s
par E(ds), r<s,

4ok (2alh® + 2ah + 1) e

[
B = e e ey

ah+1)e™ +(ah—1)e*

=
Eya) (1 + dak ¢ 5 — k)

{19a—)

In (193) K and E are respectively the complete elliptic integrals of the first and the second
kind. For 0<a<b, the singular integral equation (18) must be solved under the single-
valuedness condition (17b). If r, is relatively small so that a =0 and the separation area is
circular (Fig. 1b), the integral equation (18) remains the same except for the dominant part (i.c.
the first term on the Lh.s.) which becomes

A 1 L ‘ hz(r,s)(—-l—-——l—)f(s)ds, 0)

1+x; S—r s+r

where

-7
- K(siry+ E(sir), s<r,
hyr, 8) = @n
3
p E(rls), s>r

In this case the condition (17b) is not valid and also is not required for a unique solution of the
integral equation. It should be noted that in both cases the solution is obtained within an
arbitrary rigid body displacement in w which can be chosen as being zero.

For a given ro/h and y > v, if a > 0 then both a and b are unknown constants. Also we note
that because of the requirements of smooth contact at a and b, f(a) = 0= f(b) and therefore
the index of the singular integral equation (18) is (~ 1){13]. Thus, in solving the problem the two
conditions which would account for the unknowns a and » are the condition (17b) and the
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consistency condition of the integral equation[13). To solve the problem numerically we first
define the following new variables and quantities:

x=[2r-(b+a)li(b-a),
t=[2s ~(b+adi(b - a),
o = ha,

o=

k(x,t)= ;—; [hy(r, 5)— 1],

kix, t)y= bzha (bz-;ta t+ bz-;;a) f: E, (%)Jo(ar).l,(as)w dw,
k(x) = 22 f Ex(%)5(22 ) otraro do. 2

The integral equation (18) and condition (17b) may then be expressed as

L W)duf [‘k(x,:)+k,(x,z)]¢(f)d:=1-ykz(x), -1<x<l, @

t—-x

f‘ &(t)de =0. (24)

Writing the solution of (23) in the form
=GN -)"?  -1<t<l] (25)

eqns (23) and (24) may be reduced to [14]

-2
2 i,f‘l G(H[,,,_lxﬁ k(xy )+ ki (x;, !.-)]=I-'ykz(x;), G=1,...n+1)  (26)

1=}

2n
1
t = cos (n—t_%), n=1,..n (28)
X, 2j~1 .
-—cos[2 (n-&-l)]’ j=L..n+1 2%

In {14] it was shown that the extra equation in (26) corresponds to the consistency condition of
the original integral equation (23). Thus the (n +2) equations given by (26) and (27) determine
the (n +2) unknowns G(t;), (i=1,..n), a and b.

Noting that (18) gives o, (r, 0) on the entire 7 = 0 plane (i.e for 0 s r <), after determining
&(t) the contact stress outside the separation region (i.e. in 0sr<a, b<r<w) may be
obtained from

Lo, 0=20n L, (b0, btay L[ o
- 0u(n =L pep(z IR~ xdt+f

x[%k(x,r)-»k,(x,r)]qs(:)d:-1+7k,(x), R LI (30)



778 M. R. Gecit and F. ERDOGAN

In the case of circular separation region (i.e. for a = 0), we also have f(0) =0= f(b) and only
b is unknown. Therefore, the index of the singular integral equation is again —1, and the
solution must satisfy the consistency condition which accounts for the unknown constant b.

S. THE PLATE ASSUMPTION
A simple approximation to the lifting problem may be obtained by using a standard plate
theory to determine the displacements in the elastic layer. For example assuming that ro/h is
sufficiently small and a = 0, by using the classical plate theory the problems can be formulated
as follows:

Dd d[l1d/ dw o _
737{'3?[737("&7)]}”" P8(r - ro), r<b, 31

D= S _3 w(b) =) d (b) 0 dJ (0) =0 W(O) <> (32a—d)
’ ’ dr ’ d; ’ !
gl v ing

p(b’=P) Pry

@b 3D {b*-r[1+2logb-2H(r-r)logrl}, 0sr<b. (33)

w(r) =

In (33) the constant b is the only unknown which needs to be determined. On the other hand,
physically the problem has two more boundary conditions which have not yet been satisfied,
namely the conditions of zero bending moment and zero transverse shear at 7= b. It is thus
clear that the classical plate theory cannot provide a solution which satisfies all the physical
boundary conditions. If b is determined by using the condition that at r=b the bending
moment is zero (i.e. w"(b) =0), we find

b2=.i4_’2£

D. o

or

= Ayrolh)'". (35)

o

In this case the force equilibrium requires that a transverse shear V = r,P/b be applied along the
circle r = b to the plate, giving the contact stress as

—[p,+5‘,’;’16(r—b)], bsr<m,
azz(’v0)=
0, 0<r<hb. (36)

A less physically acceptable solution from the plate theory may be obtained by determining
b from the condition of zero transverse shear at r = b, which requires that a concentrated
bending moment be applied to the plate along the circle r = b to maintain its equilibrium.

6. THE CASE OF COMPRESSIVE FORCE

The formulation of the contact problem given in Sections 2-4 is applicable to the case of
compressive force (see the insert in Figs. 9-12) as well as the lifting force shown in Fig. 1. In
the case of compressive force, P and y = Pf(hp,) are negative quantities. For values of P
satisfying p(r) <0, 0 <r <, (11) is still valid and gives the contact pressure. For a given r,, at
a critical value P = P, or y = y,, contact stress becomes zero at r = r., where both v., and r.,
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are unknown. These unknowns are again determined from
r)=0, Lp(r,=0 37
p cr ’ dr p cr L

where p(r) is given by (11).

If the magnitude of P exceeds P, (i.e. for |P|>|P.|), then there will be separation on the
contact plane z = 0. For relatively small values of r, the separation would take place along a
ring-shaped region a <r<b where a>r, In this case the integral equation (18) and the
single-valuedness condition (17b) are still valid. However, for large values of r; if one continues
to increase the magnitude of P beyond P, at a certain value |P|=|P_,| the contact pressure
becomes zero at r =0 and for |P|>|P_,| one would have two separation zones, 0 <r < ¢ and
a<r<b, where 0<c<ry<a<hb. In this case the integral equations of the problem and the
single-valuedness condition become

l‘i_#K% {fo [(ETl-—r_ ﬁ) ha(r, $)+ hy(r, S)]f.(S) ds

b
+£ [;—1—, hi(r, 5)+ h(r, s)]fz(s)ds} mp.-Phr),  O=r<c,

1_4;{‘_’(;1; {fo [# hy(r, 5)+ htr, s)]fl(s) ds

b
[ [ mno+ms | ds}=p-Phan,  a<r<s,  Gsab)

b
L f(ndr=0, (39)

where
fn(r)=—a-W(r0) 0sr<c
ar A A — .
f(r)=iw(r0) a<r<b
2 ar 7 ’
hy(r,s)==m J': E(a))o(ar))i(as)a da,

h(r)=ry J: Ex(a)Jo(are)o(ar)a da. (402-d)

The functions E,, E,, h, and h, are defined by (19) and (21). The indexes of both singular
integral equations (38a) and (38b) are —1. Thus, the two consistency conditions and the
single-valuedness condition (39) provide three equations to determine the unknown constants a,
b and c. In practice the problem may easily be solved numerically by normalizing the intervals
€0, c) and (a, b) and by using the technique mentioned in Section 4.

If r, is increased further, due to the loads po+ pgh = p., the center portion of the circular
separation region would collapse and one would have two ring-shaped separation regions,
d<r<cand a<r<b where 0<d<c<ry<a<b. In this case defining

=9
fHiln= p w(r,0), d<r<c,

far) = 5‘3; w(r,0), a<r<b, (41a)b)
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the integral equations become

< b
L h(r, s)f(s)ds + f h(r, s)f2(s)ds = p.— Ph(r), d<r<c,

b c {42a,b)
f h(r, s)f2(s) ds +L h(r, 5)fi(s)ds = p. = Phy(r), a<r<b,
hir,5) =2 [ 1LE) N s)] @)

Note that in (42) only the first terms on the left hand side have kernels with Cauchy type
singularity. Here the unknown constants a~d are determined from two consistency conditions
of the integral equations and the following two single-valuedness conditions

< ]
fa filndr=0, L fndr=0, (44a.b)

7. RESULTS

For relatively small values of ro/h and y >y, >0 (i.e. for lifting force) some of the
calculated results corresponding to a circular separation region (i.e. for a = 0) are given in Figs.
4-6. Figure 4 shows the radius of the separation region b as a function of y for fixed values of
rolh. The figure also shows the parabola obtained from the plate theory as given by (35). As
seen from the figure, the plate theory predicts a separation area which is considerably greater
than that given by the elasticity solution. One may also note that according to the plate theory
continuous contact (i.e. b =0) is possible only for y =0 (or, for P =0) which is clearly very
unrealistic. However, as ¥ increases, the relative differences between the results calculated from
the two procedures would decrease and the results obtained from the plate theory could
become acceptable. Similar results were found in {11] for the plane problem.

20

15 rg/hs001 -

15  rg/h=0.1 -

Fig. 4. Variation of the radius of the circular separation area as a function of loading ratic y=
Pih(pgh + po). (Full line: elasticity solution, dashed line: plate approximation).
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Fig. 5. Distribution of the contact stress @, (7, 0) = p(r) for various values of y and for r,/h = 0.01 in the

case of circular separation area (p, = pgh + p,).
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Figures 5 and 6 show the distribution of the contact stress ¢.,(r,0) = p(r), r> b for fixed
values of the load ratio y = P/hp.. The calculated values of the corresponding separation radius
are also shown in the figures. The contact stress obtained from the classical plate theory is
given by (36), namely

0, O0sr<p,
=1 =(2.+585),  r=s, 9)

= Pes b<r<m,

This tendency of concentration of the contact pressure around r = b may also be observed in
Figs. 5 and 6.

The results for the ring-shaped separation region (i.e. for 0 < g < b), again for the case of
lifting force, are given in Figs. 7-9. Figure 7 shows, for two fixed values of load radius ry/h and
for y > v.» the radii of the separation area, a and b. The figure also shows the transition value
of y at which the ring-shaped separation area becomes circular. The value of the corresponding
radius b of this circle is also indicated in the figure.

Some sample results for the contact stress distribution o, (7, 0) = p(r) are shown in Figs. 8
and 9 for fixed values of loading radius 7o/ and the load ratio y = P/hp,. Again, the figures also
show the corresponding contact radii a and b.

Figures 10-12 show the results for the compressive force. For values of r,=0.01,0.1 and 1.0
the figures show the values of the load ratio vy, = P./hp. and the radius 7., at which the
separation would start. Figures 10 and 11 also show a sample result for which |y| > |y.,| and the
corresponding radii a and b of the separation region. In order to include the entire pressure
distribution and to include sufficient details for [p(r)ip.| <1, in figures different scales have
been used for p>p, and for p <p, Note that for very small values of ro/h the maximum
pressure is at r =0. However, as r, increases r =0 becomes. the point of a local minimum for
pressure (see Fig. 12) indicating that for certain combinations of r, and y there may be an
additional separation region around r = 0.

2 “*r A Y | S 4 T T \j L 4 T

-2
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0 A
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B
118 -
5 ‘1 \\\ _‘
Q J L 4 | N F
i 2 2.535 3

Fig. 7. The radii a and & of the ring-shaped separation area.
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Fig. 9. Distribution of the contact stress o.,(7,0)= p(r) in the case of ring-shaped separation area for
roih =2, (P, = pgh + py).
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Fig. 10. Distribution of comtact stress for compressive loading, ¥ = Pi(hp,), p, = po+ pgh. ro=0.01h.
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Fig. 12. Distribution of contact stress for compressive loading, ¥ = Pi(hp, ), p. = po+ pgh, ro = h.

REFERENCES

. J. Dundurs and M. Stippes, Role of elastic constants in certain contact problems. J. Appl. Mech. Trans. ASME 317, 965

(1970).

. Y. C. Pao, T. S. Wu and Y. P. Chiu, Bounds on the maximum contact stress of an indented elastic layer. J. Appl.

Mech., Trans. ASME 38, 608 (1971).

. M. Ratwani and F. Erdogan, On the plane contact problem for a frictionless elastic layer. Int. J. Solids Structures 9,

921 (1973).

. M. B. Civelek and F. Erdogan, The axisymmetric double contact problem for a frictionless elastic layer. Int. J. Solids

Structures 19, 639 (1974).

. L. M. Keer, J. Dundurs and K. C. Tsai, Problems involving a receding contact between a layer and a half space. J.

Appl. Mech. Trans. ASME 3, 1115 (1972).

. Y. Weitsman, On the unbonded contact between plates and an elastic half-space. J. Appl. Mech., Trans, ASME 3%, 198

(1969).

. S. L. Puand M. A. Hussain, Note on the unbonded contact between plates and an elastic half space. J. Appl. Mech.,

Trans. ASME 37, 879 (1970).

. Y. Weitsman, A tensionless contact between a beam and an elastic half spece. Int. J. Engng Sci. 10, 73 (1972).
. F. Erdogan and M. Ratwani, The contact problem for an elastic layer supported by two elastic quarter planes. J. Appl.

Mech., Trans. ASME 41, 673 (1974).

. L. M. Keer and M. A. G. Silva, Two mixed problems for a semi-infinite layer. J. Appl. Mech., Trans. ASME 3, 1211

(1972).

. M. B. Civelek and F. Erdogan, The frictionless contact problem for an elastic layer under gravity. J. Appl. Mech.

Trans. ASME 42, 136 (1974).

M. B. Civelek and F. Ergodan, Interface separation in a frictionless contact problem for an elastic layer. J. Appl
Mech., Trans. ASME 42, 175 (1976).

N. 1. Muskhelishvili, Singular Integral Equations. Noordhoff, Groningen (1953).

F. Erdogan and G. D. Gupta, On the numerical solution of singular integral equations. Q. J. Appl. Math. 29, 525 (1972).



